STABLE DICATIONS OF TETRAAMINO-p-BENZOQUINONES

Rudolf Gompper*, Rudolf Binder and Hans-Ulrich Wagner

Institut für Organische Chemie der Universität München Karlstraße 23, D-8000 München 2, West Germany

Abstract: N-Peralkyl-tetraamino-p-benzoquinones react with oxidants to form crystalline dication salts. Reductive acylation gives rise to 1,4-bisacyloxy-2,3,5,6-tetraaminobenzenes which can be oxidized to benzene dication salts.

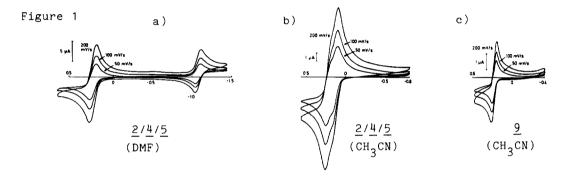
The benzene dication is an antiaromatic 4π electron system. Its hexachloro derivative, ¹ possessing a triplet ground state, has been detected in solution. Amino groups exert, as expected, a stabilizing effect on this system. For example, quinone diminium salts are crystalline compounds ² with singlet ground states. Recently, a derivative of hexaaminobenzene ("wheel") was synthesized and subsequently oxidized to a dication which had a triplet-ground state in solution. ³

Benzoquinones can be viewed, in a sense, as derivatives of benzene dications. Since amino groups compensate for the electron-withdrawing effect of the carbonyl groups, tetraaminobenzoquinones are therefore expected to be electron-rich rather than electron-poor compounds. Thus, dialkylaminonaph-thoquinones can be O-alkylated. MNDO calculations show that the triplet state of the tetraamino-p-benzoquinone dication has approximately the same energy as the singlet state and that the difference between the heats of formation of tetraamino-p-benzoquinone and its dication is not fundamentally different from that of hexaaminobenzene and its dication:

MN	DO NH ₂	H ₂ N NH ₂ H ₂ N NH ₂	H ₂ N NH ₂ H ₂ N NH ₂ NH ₂
HOMO/NHOMO (eV)	-9.09/-9.23	-7.83/-8.08	-6.79
H _f ^o (singlet) H _e ²⁺ (singlet, CI)	-30.8 kcal/Mol	-6.1	90.2
H _f ²⁺ (singlet, CI)	451.3 kcal/Mol	410.4	494.5
(triplet)	450.8 kcal/mol	410.2	483.5
ΔH _f (triplet/singlet)	-0.5 kcal/Mol	-0.2	-11.0
ΔH _f (triplet ²⁺ /	481.6 kcal/Mol	416.3	393.3
singlet ⁰)			

691

Since the donor effect of the amino substituent is reduced when tetrakis-dialkylamino-p-benzoquinones are not planar (steric), we set out to synthesize planar tetraamino-p-benzoquinones. When tetramethoxy-p-benzoquinone (1) is warmed with N,N'-dimethylethylenediamine without solvent, the dark blue tetraamino-p-benzoquinone derivative 2 is obtained in moderate yield (mp (cyclohexane) 190-192°C; UV/VIS (CH₂Cl₂): λ_{max} (1g ϵ) = 627 (2.28), 394 (4.05), 235 (sh, 4.02), 232 nm (4.10)). The low carbonyl stretching frequency (1618 cm⁻¹) indicates a high nucleophilicity of the carbonyl oxygen characteristic of β -aminovinylketones. However, alkylation and protonation of 2


NHMe NHMe NHMe
$$\frac{2}{2}$$
 Me $\frac{1}{2}$ Me \frac

occur only at nitrogen and the salts $\underline{3}$ ($\underline{3a}$: mp 205-207°C; $\underline{3b}$: mp 278-279°C, UV/VIS (CH₃CN): λ_{max} = 467, 354, 227 nm) are formed. The reaction of $\underline{2}$ with triflic anhydride affords, instead of an acylation product, the bronze dication salt $\underline{4}$ (mp 194-196°C; UV/VIS (acetonitrile): λ_{max} (lg ε) = 589 (4.39), 514 (4.13), 347 (3.92), 270 nm (4.10)). The corresponding green tetrafluoroborate $\underline{5}$ can be prepared in 71% yield from $\underline{2}$ using nitrosyl or silver tetrafluoroborate (mp 212°C; UV/VIS (CF₃COOH): λ_{max} (lg ε) = 590 (4.60), 509 (4.29), 390 (3.65), 331 (4.00), 236 nm (4.25)).

 $\frac{4}{10}$ and $\frac{5}{10}$ are thus the first reported benzoquinone dication salts (the tetrakis-dimethylamino-p-benzoquinone radical cation has been described only recently. Despite their $(4n)\pi$ electron systems, $\frac{4}{10}$ and $\frac{5}{10}$ are fairly stable in the crystalline state (they decompose slowly in solution). As a solid, $\frac{5}{10}$ provides a singlet ESR spectrum centered at g=2.0. The spin concentration at 20° C is 3.3×10^{19} spins/mol which amounts to a concentration of 5.5×10^{-5}

radicals per molecule. At $-160\,^{\circ}$ C, in addition to the singlet spectrum, a weak triplet signal at g = 4 is observed which disappears at higher temperatures. In methanol solution, no triplet signal but a well-resolved multiplet spectrum centered at g = 2.0029 with more than 17 lines is observed (a = 3.88 G). Obviously, the radical species that causes the ESR signal (radical cation of $\underline{2}$?) is present only in very low concentration. There is thus no indication that $\underline{5}$ exists in a triplet state at temperatures higher than $-160\,^{\circ}$ C.

The cyclovoltammograms (Figure 1b) of $\underline{2}$ and $\underline{4}$ or $\underline{5}$ (0.001 M in acetonitrile with 0.1 M $\mathrm{Et}_{4}\,\mathrm{N}^{+}\mathrm{BF}_{4}^{-}$) exhibit one broad distorted wave typical of two successive oxidation steps (at approximately 0.14 and 0.22 V vs SCE) with a

potential separation of approximately 80 mV (cf. 7). In DMF the two steps coalesce even more, so that one observes only a single wave at +0.25 V (Δ E \approx 60 mV; Figure 1a). The area of this wave is twice that of the wave at -1.07 V (reduction to the radical anion). The electrochemical results are in accordance with the observation that only the dication salts $\frac{4}{2}$ and $\frac{5}{2}$ were obtained through chemical oxidation, and the radical cation at best in trace amounts.

 $\underline{2}$ can be reduced with zinc/acetic anhydride to afford the air-sensitive electron-rich benzene derivative $\underline{6}$ in high yield (mp 205-206°C; cyclovoltam-mogram in CH $_3$ CN: two-electron wave at +0.16 V vs SCE, Δ E \approx 60 mV). The oxidation potential of $\underline{6}$ differs not very much from that of $\underline{2}$ which underlines the close electronic relationship between tetraaminodihydroxybenzenes and tetraaminobenzoquinones. Surprisingly, the dimethoxy derivative $\underline{7}$ is formed when $\underline{1}$ is warmed with an excess of dimethylethylenediamine in water (mp 167-169°C). The oxidation of $\underline{6}$ with nitrosyl tetrafluoroborate furnishes the violet-blue benzene dication salt $\underline{8}$ in 61% yield (mp 164-166°C; UV/VIS (acetonitrile): λ_{max} (lg ε) = 631 (2.93), 425 (4.13), 372 (4.35), 253 nm (4.26)).

Likewise, tetrapiperidino-p-benzoquinone $(\underline{9})$ reacts with nitrosyl or trimethyloxonium tetrafluoroborate to afford, as green needles, the dication salt $\underline{10}$ in almost pure form (mp 239-241°C; λ_{max} (acetonitrile) = 543 nm). The cyclovoltammogram of $\underline{9}$ exhibits only a single wave at +0.22 V vs SCE in acetonitrile (Δ E \approx 30 mV; Figure 1c) or at 0.33 V in DMF (Δ E \approx 33 mV) similar to a two-electron wave. It is surprising that with tetrakis-dimethylamino-p-benzo-

quinone the electrooxidation stops at the stage of the radical cation. 6 The reductive acylation of 9 gives rise to the colorless diacetoxytetrapiperidinobenzene 11 (mp 296-298°C) which could not be oxidized.

In order to investigate the properties of mercapto analogues of 2, the purple bisethylenedithio-p-benzoquinone 12 (mp (chlorobenzene) 314-315°C) was synthesized through the reaction of chloranil with ethanedithiol (cf. the reaction of 2,3-dichloronaphthoquinone⁸). The donor effect of the ethylenedithio groups is, however, too weak to permit the chemical oxidation of 12 to

a radical cation or a dication. Alkylation gives rise to the bright orange disulfonium salt $\underline{13}$ (UV/ VIS (H_2SO_4) : λ_{max} (lg ϵ) = 493 (3.07), 387 (4.11), 263 (4.05)).

Acknowledgements: This work has been funded by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. The ESR spectra have been measured by Dr. H. G. Fitzky, Bayer AG, Leverkusen.

References

- 1. E. Wasserman, R.S. Hutton, V.J. Kuck, E.A. Chandross, J. Am. Chem. Soc. 96 (1974)

- E. Wasserman, R.S. Hutton, V.J. Ruck, E.A. Chandross, J.Am. Chem. Soc. 96 (1974)

 S. Hünig, P. Richters, Chem. Ber. 91 (1958) 442. [1965.]

 R. Breslow, P. Maslak, J.S. Thomaides, J.Am. Chem. Soc. 106 (1984) 6453.

 R. R. Gompper, N. Sengüler, Tetrahedron Lett. 24 (1983) 3567.

 K. Wallenfels, W. Draber, Tetrahedron 20 (1964) 1889.

 H. Bock, P. Hänel, W. Kaim, U. Lechner-Knoblauch, Tetrahedron Lett. 26 (1985)

 D. S. Polcyn, I. Shain, Anal. Chem. 38 (1966) 370. [5115.]

 W. E. Hahn, L. Wojciechowski, Rocz. Chem. 41 (1967) 1067 (Chem. Abstr. 68 (1968) 50510v) 59510y).